A 1D-CNN Based Deep Learning for Detecting VSI-DDoS Attacks in IoT Applications

Tsogbaatar Enkhtur <tsogbaatar.enkhtur.ta4@is.naist.jp>

VSI-DDoS attacks

Goal and operation. The VSI-DDoS attack is a new form of application-layer short-burst low-rate DDoS attacks with aim to degrade the quality of service towards users.

![Figure 1: An illustration of VSI-DDoS attack, Rn indicates the degree of attack intensities per time period, duration of the attack Dn, and interval of the attack λn.](image)

Figure 2 illustrates how the VSI-DDoS attacks can seriously affect the QoS of the users for IoT applications.

Detection adversary. Requests in VSI-DDoS attacks are similar to legitimate users' but they exhaust a server queues in milliseconds.

![Figure 2: Cumulative density analysis of response time in presence and absence of VSI-DDoS attacks in IoT applications.](image)

Problem statement

Given the data of nth different time-series with length T, i.e., \(x = (x_1; x_2; ...; x_T)^T \), and collected data from multiple IoT applications in the presence and absence of VSI-DDoS attacks. We aim to achieve the following three goals:

- VSI-DDoS datasets, i.e., generating a VSI-DDoS IoT applications dataset with diverse attack scenarios and
- make it public.
- VSI-DDoS detection, i.e., detecting VSI-DDoS attacks in IoT applications to alleviate QoS interruption.
- Experimental analysis, i.e., carry out exhaustive experimental analysis using both testbed and benchmark datasets with diverse attack scenarios.

![Figure 3: CPU and memory usage of IoT application server with and without the VSI-DDoS attack.](image)

Contribution

- We prepare a new VSI-DDoS IoT applications dataset with diverse attack scenarios and made it available for public use to fill the research gap.
- We propose a 1D-CNN deep learning approach to detect VSI-DDoS attacks early for IoT applications.
- The experimental evaluation illustrates the performance of the proposed approach using testbed datasets. We carry out experiments on benchmark datasets as well to compare with baseline models.

![Figure 4: Received and sent packets of IoT application server with and without the VSI-DDoS attack.](image)

Dataset

We evaluate our proposed 1D-CNN deep learning approach using two datasets: (i) testbed data, and (ii) benchmark data. **Testbed data:** We used Time Series Benchmark Suite (TSBS), which simulates data streaming from a set of trucks belonging to a fictional trucking company in IoT application.

![Figure 5: Experimental testbed setup and topology](image)

Proposed CNN-Based Detection Model

We first introduce the problem we aim to study, then we elaborate the proposed 1D-CNN-based deep learning for detecting VSI-DDoS attacks in IoT applications to combat QoS degradation of services towards users. A system architecture of 1D CNN-based VSI-DDoS detection is shown in Figure 6.

![Figure 6: A system architecture for 1D CNN-based VSI-DDoS detection](image)

Result

Figure 7 shows the accuracy of each model. The experiment results show that our 1D-CNN model has the highest accuracy compared with LSTM and the other baseline machine learning methods.